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1 Introducing Uncertainty

Throughout the course, we haven’t mentioned the fact that some things are un-

certain. Given that we typically care about how choices today influence options

tomorrow, we should be concerned about the fact that the future is uncertain.

How do we solve this problem? Well, people form beliefs! In order to think

about how people do that, we have to implement a bit of structure on how we think

some variable, yt, might evolve in the future. In order to see this, let’s think about

a few real world examples:

• When you think about how hot or cold it will be tomorrow, how do you do it?

• When thinking about which library to study in based on how busy you think

it will be, how do you choose?

• How do you pick your lottery numbers?

Each one of these systems of thinking can be formalised. I’m going to argue that each

of these questions have answers that can be roughly modelled by the following three

equations, where ϵt+1 is a random shock, i.e. something that we can’t predict,

that affects our variable of interest at time t+ 1:

yt+1 = ρyt + ϵt+1 (1)

yt+1 = ȳ + ϵt+1 (2)

yt+1 = ϵt+1 (3)
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Let’s consider each of these in turn, working with the assumption that ϵt is an

iid random variable, i.e. it’s distribution is fixed over time, and we draw from out

randomly, without reference to previous draws.

Equation 1

Equation 1 answers the first question; what the temperature is tomorrow is probably

going to be pretty similar to what it was today. When we think some variable Yt

has this relationship, where Yt+1 is a function of ρYt and some random shock, we

call it an AR(1) process, which stands for autoregressive(1); i.e. we can regress

Yt+1 on itself one period back. As you might expect, an AR(2) takes the form:

Yt+1 = ρYt + ϕYt−1 + ϵt+1

For simplicity, we’ll stick to AR(1)s for now. Remember that at time t, we don’t

know what Yt+1 is going to be; why is that? Because ϵt+1 is not something we

can predict. It is an iid random variable. What is the expected value of Yt+1?

Well if we take the expectation conditional on all the information available at time

t, which I will denote using the notation Et, then:

Et[Yt+1] = Et[ρYt + ϵt+1]

= Et[ρYt] + Et[ϵt+1]

= ρEt[Yt] + Et[ϵt+1]

But if we’re conditioning on all the information available at time t, then it must be

the case that we know what Yt is, right? The value of Yt has been realised! It is a

non-random constant now. Therefore:

Et[Yt+1] = ρYt + Et[ϵt+1]

What value do you think Et[ϵt+1] ought to take? Well if it is a random shock,

that we cannot predict, then we must think that in expectation it is 0. If instead

we expected it to be some positive constant, then that wouldn’t be a random

shock; note that if we thought for example that there was some trend in our process,

i.e. Et[ϵt+1] = a, then we could equally describe the process described in Equation
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14 as:

yt+1 = a+ ρyt + ϵ̃t+1

And here it should be obvious that the expected value of ϵ̃t+1 = 0. So when we talk

about random shocks, we’re always talking about something that is mean equal

to 0. So, our best prediction of tomorrow’s Y ?

Et[Yt+1] = ρYt

What about Yt+j? Given our information at time t, what should our expectation of

Yt+j be? Recall that our process tells us that Yt+j = ρYt+j−1 + ϵt+j; now consider

the following:

Et[Yt+j] = Et[ρYt+j−1 + ϵt+j]

= ρEt[Yt+j−1]

By identical logic we can keep going, substituting in our governing process as out-

lined in Equation 14, until we get:

Et[Yt+j] = ρjYt (4)

Typically in economics, we assume that ρ ≤ 1; why is that? Suppose ρ > 1; what

would happen to Yt? It would explode; put mathematically, we can see that if ρ > 1,

then:

lim
j→∞

Et[Yt+j] = lim
j→∞

ρjYt = ∞

In economics, nothing goes to infinity, ever! Therefore any process that we’re using

to model economic behaviour should not lead to the conclusion that such behaviour

will diverge to infinity!

Equation 2

The way you might think about how busy a given library is going to be is by

assuming that it will be as busy as it has been on average, plus some random shock.

If we let Ȳt =
1
t

∑t
i=0 Yi, then we get the expression in Equation 2. What should

we expect in terms of how busy the library is tomorrow? Using the same procedure
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outlined above:

Et[Yt+1] = Et[Ȳ + ϵt+1]

= Ȳ

Clearly,

Et[Yt+2] = Et[Ȳ + ϵt+1 + ϵt+2]

= Ȳ

And so on, for as far forward as you care to look.

Equation 3

This is just a simplified version of Equation 2; here, we have no idea what tomorrow’s

Yt+1 is going to be. So, as with the lottery, we just have to guess.

A Side Note; what do we mean by conditional on all infor-

mation at time t?

I mentioned above that Et denotes the expectation conditional on all information at

time t; I could just have easily said, let Ωt denote the set of all information available

at time t, and then written E[.|Ωt]. But what constitutes the set Ωt?

This is a good and important question. In the world at large, identifying the

set of all available information is an impossible task; for example, when taking the

expectation of tomorrow’s prices, we have information on the price of copper in

futures markets in Bulgaria, but do we really make use of this information? It is

available! But processing all the available information in the world pertinent to our

expectations is too difficult.

In our restricted context, i.e. in our model, we don’t need to worry about all

of this extra baggage. We have written the expression for Yt as determined solely

by past observations of Yt and shocks ϵt. Claiming that we’re using all information

available today is simply to say that we observe and take into account Yt when

forecasting Yt+1.
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2 Rational Expectations

What are Rational Expectations?

Whilst it may not be immediately obvious, what we just did above in forecasting the

expected future values of Yt+1 was an exercise in Rational Expectations. What

do we mean by Rational Expectations? We can summarise this concept using two

distinct notions; expectations are rational if and only if :

• The belief framework is consistent with the model framework.

• All information available is used to form beliefs.

Consider the first component; what this is telling us is that if in our model, Yt

evolves according to the process outlined in Equation 1, then agents in our model

believe that it evolves according to Equation 1. This means they are using

the correct system to forecast what will happen to Yt in the future.

The second component builds on our previous discussion by emphasising it.

Rational expectations requires that agents do not ignore information that is

pertinent to them. In our model, that means they make use of all available

information to forecast the future.

It should be clear to you that in all the examples above, we obeyed these two

principles, and hence we solved the problem as though we had rational expectations.

What are not Rational Expectations?

A common mistake is to assume that rational expectations means that the agents

are always ’correct’. Let’s go back to our previous examples, and suppose that

our random shock is distributed continuously (for example, suppose it is a normal

random variable); remember that we found that our best guess of Yt+1 according

to Equation 1 was ρYt? Well the probability that Yt+1 = ρYt is zero. Why? Given

ϵt+1 is continuous, although in expectation it is zero, the probability that it is zero

is zero. In formal language, we say that Yt+1 ̸= ρYt almost surely. So rational

expectations doesn’t require that agents can predict the future!
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Why are Rational Expectation reasonable:

They are enormously useful. Under the framework of Rational Expectations, we

can produce consistent and coherent results from our models. To see this, suppose

that we do away with the first component of rational expectations, i.e. we allow

agents to have false systems of beliefs. How would you model this? How would you

select an alternative belief system? What justification could you give for this belief

system?

Crucially, how could you claim that agents would persistently believe in a

false system? It is possible to produce Rational Expectations using a learning

model, where agents are initially agnostic about the system governing a process,

but through observation come to understand the process. If you’re going to claim

that they’re not doing that, then why aren’t they? Are people stupid? Do people

not respond to incentives?

Suppose we relax the second term, so that we allow agents to ignore some in-

formation; which information do we allow them to ignore? Why that information

and not some other? Is the information that agents do observe something you’re

imposing? If so, what justification can you give for that? Why wouldn’t agents use

all available information?

The fact remains that even at the research frontier, we (as in, humanity,

not just economists) do not know how people form expectations. It is very

difficult to credibly offer an alternative mechanism that is robust to the learning

argument.

Why are Rational Expectations not reasonable:

Despite all of this, it should be clear to all of you that people don’t have ratio-

nal expectations. It is clearly the case that people don’t perfectly understand the

systems that govern random processes relevant to them, and it’s also clearly the

case that we don’t think about the future price of futures markets of copper in

Bulgaria, even though it might be relevant and available information to us. Don’t

worry, economists know this. Frontier work in economics focuses extensively on

what happens when we relax both of these features of Rational Expectations.
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A Small but ‘Important’ rant:

Something that really bothers me when I hear it in the news is when people say,

’These stupid economists believe that people form rational expectations! What

idiots!’ Whilst there are a few eccentrics out there who really do believe in rational

expectations, the vast majority of the economics profession are aware that people

don’t actually have rational expectations; RE is a model. It’s also worth noting that

it’s a model that does extremely well in most cases, in that it produces results that

have been enormously useful, not just in understanding the world but in producing

more effective policy that has improved the lives of millions.

Challenging a model by offering a credible alternative framework is both a noble

and valuable pursuit. Shouting that rational expectations aren’t true is just a waste

of air; there is nothing impressive or valuable in decrying a model framework because

of its implausibility, nothing creative in that, nothing worthy of praise. The reason

why Tversky and Kahneman, and Thaler won Nobel Prizes in this area is not be-

cause they said ‘Rational Expectations is nonsense’. They won Nobel Prizes because

they were able to make statements of the following form; ‘expectations are not ra-

tional, because of this consistent and modellable characteristic, that governs

broad human behaviour across people, over time.’ By identifying a mechanism

that differs from the rational paradigm, these economists were able to provide

a coherent and credible system that can challenge rational expectations, and

the whole rational framework. This is an extraordinary achievement, and is worthy

of praise.

For those of you unconvinced of the progress economics has made since the

rational expectations revolution (which occurred nearly 50 years ago, at a time

when less than 1% of the US population owned a computer), I would draw

your attention to work by Mike Woodford, here at Columbia. Or Hassan Afrouzi, or

Mark Dean, or Alessandra Casella. So there are four Professors just at Columbia,

whose research deals almost exclusively with deviations from Rational Expectations.

I want to reiterate that although Rational Expectations are clearly false, that

does not mean they are not useful. In most settings, rational expectations are

a very good proxy for real world behaviour. They are also extremely tractable;

this feature may not appear hugely important to you now, but this is an enormously

non-trivial advantage of this modelling framework. Without rational expectations,

many models become literally impossible to solve. Okay, that’s my rant over!
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3 Rational Expectations and Project Valuation

Up to now, we have assumed that the payoffs associated with a given project are

known with certainty. This is clearly unreasonable. Suppose instead that the stream

of payments associated with a project, {y0, y1, ...}, is random. How do we assess the

value of this project? A slight modification to our formula for PV will allow us to

extend the concept to cover uncertain payoff returns. Assuming a fixed discount

rate, (1 + r)−1, then:

PV (Y ) = E0

[
∞∑
t=0

(
1

1 + r

)
yt

]

=
∞∑
t=0

(
1

1 + r

)
E0 [yt]

This formula tells us that, conditional on a set of beliefs over the path of {yt}, then
we can calculate the present value in a similar as before. Under the assumption of

rational expectations, then these beliefs should be as good as possible. In simple, toy

examples, establishing the present value of a stream of random payments is simple.

For example, suppose that:

yt = ȳ + ϵt

ϵt ∼ N(0, 1)

where ȳ is known. Then:

E0[yt] = E0[ȳ + ϵt]

= ȳ + E0[ϵt]

= ȳ
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Therefore, present value is given by:

PV (Y ) =
∞∑
t=0

(
1

1 + r

)
E0 [yt]

=
∞∑
t=0

(
1

1 + r

)
ȳ

= ȳ

∞∑
t=0

(
1

1 + r

)
=

1 + r

r
ȳ

3.1 A problem...

Compare the present value of the following two projects, projects A and B, where

the random process governing {yt} differs in the following way:

A : yt = ȳ + ϵt

ϵt ∼ N(0, 1)

B : yt = ȳ + ϵt

ϵt ∼ N(0, 1000000)

What is the difference in their present value? There is no difference. Which project

would you prefer? Surely Project A! What this captures is the fact that present

value, in its current form, tells us very little about the riskiness of projects when

returns are uncertain.

3.1.1 An application to economics

The idea that the riskiness of a project should affect our assessment of it has a very

natural parallel with the notion of expected value vs. expected utility in economics.

To illustrate with an example, suppose I offered you the following game: I will

flip a coin, and if it lands on tails, I will give you $2, and the game ends. If I flip

heads, then I will flip again. This time, if I land on tails, I will give you $4. If it

lands heads, I flip again. Again, I double the reward from tails (now $8), and if

I land on heads, we keep going. Note that the returns here are risky. How much

would you be willing to pay for this game? Think about it for a couple of seconds.
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Now that you’ve established an intuitive impression of how much the game is

worth, let’s establish what it is worth in expected value. Recall that the expected

value is just the sum of all the potential payouts, scaled by their probability. The

probability that I get a payout of $2 is 0.5. The probability of $4 is 0.25. The

probability of $8 is 0.125, and so on. Putting this together:

EV = 0.5 ∗ 2 + 0.25 ∗ 4 + 0.125 ∗ 8 + ...

= 1 + 1 + 1 + ...

= ∞

So the expected value of this game is ∞. Did any of you value the game that high?

I doubt it! This result is known as the St Petersburg paradox, and it formed

one of the bases for establishing expected utility theory. That theory tells us that

the raw payoffs are not the only thing that matter to us. In mathematical terms,

we care about more than just the first moment, and that’s because we dislike ‘risky’

prospects. Let’s show how expected utility resolves the paradox.

3.1.2 Resolving the St Petersburg Paradox

Suppose that instead of taking the value in absolute terms of the payoffs, we instead

take the utility of the expected payoff instead. For simplicity, suppose that:

u(yt) = log(yt)

Note that assuming a concave utility function is the same things as assuming risk

aversion. To see this, let’s start by defining risk aversion.

Definition 1: Risk aversion denotes a preference for the expected value

of a risky payoff rather than taking the risky payoff itself. For example,

if a coin toss delivers $1 for heads, and $0 for tails, then a risk averse

agent would not accept this payoff if asked to pay 50 cents for it. More

formally, suppose WTP is the maximum amount that an agent is willing

to pay for a risky payoff, then the Risk Premium (RP ) is defined as:

RP = EV −WTP

The agent is risk averse(loving) if RP is greater(less) than 0. Risk neu-
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Figure 1: Concavity in the utility function implies risk averse behavior.

trality implies that RP = 0.

Why does a concave utility function imply this? Perhaps the graph in Figure 1 will

illustrate. In the graph, we are supposing a risky scenario in which there are two

potential payoffs, {XH , XT}, that are (roughly) equally likely. The expected utility

of this payoff is then given by:

EU(Risky) = 0.5 ∗ U(XT ) + 0.5 ∗ U(XH) = U(X∗)

where U(X∗) is shown on the graph. Suppose that instead we gave the agent the

expected value of the gamble for sure: that would be a payoff of 0.5XT + 0.5 ∗XH .

The expected utility of this payoff would be:

EU(Certain) = U(0.5XT + 0.5 ∗XH) = U(E[X])

where U(E[X]) is also shown on the graph, and is higher than U(X∗). In other

words, if asked to pay E[X] for this gamble, the expected utility would be less than
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the cost. In other words, the agent is risk averse. This also leads to another definition

of risk aversion:

Definition 2: For a given gamble X, an agent is risk-averse if and only

if:

EU(X) < U(E[X])

Okay, now we’ve got that over with, what does the application of expected utility

do to the St Petersburg problem? Well, if we calculate the expected utility of the

game presented in the problem, we will find something like the following:

∴ EU =0.5 ∗ log(2) + 0.25 ∗ log(4) + 0.125 ∗ log(8) + ...

=
∞∑
j=1

2−j. log(2j)

=
∞∑
j=0

2−j. log(2j)− 2−0. log(20)︸ ︷︷ ︸
=0

= log(2)
∞∑
j=0

j2−j = log(2)
∞∑
j=0

j(0.5)j

here noting that
∞∑
j=0

jaj =
a

(1− a)2

= log(2).
0.5

(1− 0.5)2

= log(2).2 = log(4)

So the expected utility is log(4), which by the definition of the utility function means

that the value in cash is just $4! Probably not far off how much you’d pay for it!

3.2 Application to Finance

In economics, risk aversion in the utility function is typically assumed ex ante as an

invariant property of human preferences. In finance, we can go better by considering

the fact that resources are not infinite.

In the example between project A and B above, there is a distinct possibility of

enormous losses. For example, there is a roughly 15% chance of a $1,000,000 loss

or worse in every period of this project. There is roughly a 2% chance that this
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happens consecutively. A sequence of bad losses in the real world can cause a firm

to collapse, meaning they will be unable to continue with the project. As of right

now, we’ve allowed no space for such a concern.

Risk is always a factor in financial decision making, so we have to expand our

toolset to allow us to incorporate the riskiness of a project when assessing its value.

How do we do that? Well, we do it through the discount rate.

3.2.1 Modifying the discount rate

In the example above, I specified that the discount rate was fixed and given by

r. But recall what r is intended to capture: namely, the opportunity cost of the

project —the returns that we could have achieved by investing in something else

similar to the project in question. Clearly Projects A and B are not similar. So,

the appropriate discount rate should also be different.

Next class we will discuss how the riskiness and the return of a project are

intimately linked. This result will allow us to conclude that the r we use to discount

riskier projects should be higher than for safer projects. Thus, with this in place, we

can assign discount rates to projects A and B such that rA < rB. The proof below

shows that the PV of A is now higher than that of B, even though the expected

payoffs are the same.

Theorem 1. For two projects, A and B, such that both have the same expected

payoffs, , the variance of payoffs of A, σA, is less than the variance of payoffs of B,

σB, and the discount rate for A is less than that of B, 0 < rA < rB: then the PV of

A is greater than that of B.

Proof. Note that:

PV (A) =
1 + rA

rA
ȳ

PV (B) =
1 + rB

rB
ȳ
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Therefore, it is enough to show that 1+rA

rA
> 1+rB

rB
. Suppose this is not so:

1 + rA

rA
<

1 + rB

rB

∴ (1 + rA)rB < (1 + rB)rA

=⇒ rB + rArB < rA + rArB

=⇒ rB < rA

Which is a contradiction.
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