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So far, we’ve only hinted at the central role of risk. If we have mentioned it, it

has been in a hand-wavey fashion when referencing opportunity costs. Now that we

have an understanding of some of the basic tools, we can turn to risk and investigate

it more thoroughly. In this set of notes, we’ll first discuss why risk and return are

so intimately linked. We’ll then talk about how this relationship bears out when we

look at actual financial assets. We’ll then talk about how we measure risk. We’ll

discuss how we can disentangle different sources of risk, and finally, we’ll look at a

specific model, CAPM, that is used to estimate the riskiness of stocks. With these

concepts in place, we can then turn to how we apply them to the problems involved

with project selection.

1 Risk and Reward

You’ve probably heard me say a few times that more risk means more reward. Why

is this true? The best way to illustrate this is by recalling that that financial projects

(e.g. investment projects, stocks, bonds, etc.) exist in a marketplace, and so their

returns are subject to market pressures. Let’s illustrate with an example: suppose

we place all projects along two dimensions of risk and return, much in the same way

as shown in the picture below:

Here, projects can either be high risk or low risk, and either high return or low

return. The ‘high risk-high return’ and ‘low risk-low return’ quadrants make sense:

this is the maxim behind the ‘no pain no gain’ slogans we are no doubt familiar

with. But suppose you were offered a project that had high risk and low return.
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Would you take it? Similarly, suppose there were a project with low risk and high

return: would you take that one?

I suspect that your answers would be no and YES respectively. So, what does

that mean for the marketplace of these projects? Well, if I were the supplier offering

the ‘high risk-low reward’ project, I would see that nobody wants to take me up

on my offer. So, to induce people to buy my project, I have to raise the returns

that I offer, to compensate buyers for the additional risk. So, the forces of demand

and supply will push the returns of the project up, moving me into the upper left

quadrant.

Similarly, if I am offering a ‘low risk-high reward’ project, what will happen?

Everyone will want it! Punters will flood my office desperate to get their hands

on my project! This excess of demand will have the effect of raising the price to

buy into my project. In other words, if people now have to pay a lot to buy my

project, due to high demand, then the returns are pushed down. In other words,

the market pushes us into the lower right quadrant. I summarise this idea in the

following picture:
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So in well-functioning marketplaces, where buyers and sellers respond quickly

and effectively to the forces of supply and demand, projects in the upper right

and lower left quadrants ought not to exist, at least in the medium-term. Financial

markets are very fast-moving and efficient marketplaces, where prices are constantly

adjusting and agents are highly motivated to act efficiently. As such, we ought not

to see many, if any, projects that are in these quadrants.

1.1 Does this mean it never happens?

No! Sometimes there are projects that turn out to be ‘low risk-high return’; you

just have to get there first. If you identify something as in that lower left quadrant,

you better buy it quick.

That said, hedge funds, banks, and supercomputers are constantly trying to

identify these projects, and aim to do so using vast quantities of data, both con-

temporaneous and historical. You should not expect to beat them easily! Maybe

you have access to information that the market doesn’t have? Trade on that and

you could enjoy huge returns! Of course, there is another risk associated with this

approach... prison! Yay!!

In general, we should operate with intense humility when assessing the risk-

return profile of projects. With near certainty, the project you’re considering is in

one of the upper-left or lower-right quadrants. There are many extremely smart,

and extremely informed agents operating in these markets, and you should expect

them to do a better job than you at performing these identifications. Thus, always

operate under two critical, and inter-related, maxims:

1. If something seems too good to be true, it probably is

2. ‘I wouldn’t want to be a member of any club that would have someone like

me as a member’ - Groucho Marx

With respect to this second point, if someone is selling you on a great investment,

ask yourself why they’re doing that.

1.2 An example: Cryptocurrencies

Cryptocurrencies have been repeatedly marketed to mostly less well off households

as a near-guaranteed way to make huge returns.
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The narrative around bitcoin is something like, ‘This is the future. Economists,

bankers, finance researchers, governments, and business leaders are just squares

who don’t get it. You’re an idiot if you don’t buy bitcoin right now.’ This is a

narrative that strongly indicates that bitcoin is a lower-left quadrant opportunity.

The forecasts for where bitcoin is headed have been similarly outlandish:

For a long time, things looked good for the cryptocurrency advocates. Bitcoin in

particular seemed to defy the predictions of economists everywhere, lending credence

to the view that we were/are ‘ignorant’. Here is a graph of the value of Bitcoin from

2013 to the end of 2020, and then from Jan 2021 to June 2022

From a peak of just over $60,000 in September of last year, the value of Bitcoin is

now hovering around $20,000, so a 66% drop. This is a colossal drop in value.

To give perspective, consider the figure next page showing the drop in the DOW

Jones associated with the Wall Street Crash - stocks didn’t drop by anything like

that amount. The crypto crash has not just affected Bitcoin. Below I show the

snapshot of the change in price from January to July 2022 of a large number of

cryptocurrencies.
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2 Measuring Risk (i): Single assets

Now that we’re comfortable that risk and return ought to be related, how do we

measure risk? One way is by the risk premium. Another is to look at past

volatility. Let’s consider both.

2.1 Risk Premium

Take two assets:

• US Treasury bill, or T-bill.

• S&P 500 Exchange-Traded-Fund (ETF).

The former is an asset we discussed in an early class. Here’s a reminder of some of

its features:

• Zero coupon bond —pays no coupon payments.

• Maturity of one year or less.

• Pays back face value, usually in denominations of $1,000.

• Sells for discount on face value.

Note that the T-bill is backed by the US government, who can always print more

money to ensure the bond is paid. You also know exactly what cash flows the bond

generates. Whilst there is no such thing as an entirely risk free asset, the T-bill is

as close as it gets. What about the second asset, the S&P 500 ETF? What are its

features?

• An ‘ETF’ is a financial asset that tracks a specific index —in this case, the

S&P 500

• The S&P 500 is an index containing the 500 largest US firms by market capi-

talisation1

1For those of you who haven’t come across this term before, it is the value you get if you
multiply the number of shares that exist for a firm by its share price. So, if you had a firm with
1,000 shares outstanding, and a share price of $1,000, the market capitalisation (AKA market
‘cap’) would be $1, 000× $1, 000 = $1, 000, 000.
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• By buying an ‘ETF’ you are buying a share in this index —stops you from

having to buy one of every stock.

• Pays dividends from holding the shares—unknown!! .

Holding shares in an ETF is a risky venture. You don’t know how much you will

be paid in dividends, and hence you do not know what the cash flows associated

with owning this asset will be. Given what we just learned about the relationship

between risk and reward, therefore, we should expect that the return to holding the

S&P 500 ETF should be greater than holding the US T-bill. Is that the case?

Suppose we look at the average annual return of the S&P 500 and a 3-month

T-bill from 1928 to 20212. What do we find?

S&P 500 9.98%
T-bill 3.28%

So yes, the S&P 500, as a risky venture, did pay higher returns than the T-bill.

Given that the T-bill is risk-free, then the difference between these two average

annual returns is a measure of the risk premium associated with investing in the

S&P 500 ETF over the risk-free T-bill. So, we can say the risk premium for the

S&P 500 is roughly 3.70%.

Definition 1. The risk premium of a financial asset is the difference in average

annual returns of that financial asset and the risk-free US T-bill.

Note how the tied relationship of risk and return is integral to this definition. In

effect, the claim is that where there are returns, there is risk. To show that the S&P

500 was indeed more risky than the T-bill, consider the following figure, mapping

the average annual return of both assets from 1928 to 2021:

As we can see, the returns are considerably more volatile. The riskiness associated

with this volatility requires that the S&P 500 have greater returns, otherwise it is

not attractive as an investment opportunity.

2.2 Past Volatility

One shortcoming of the ‘risk premium’ is that it is only an indirect measure of risk:

we require that risks and returns are related in order to trust its conclusions. If we

2Source: Aswath Damodaran datafiles, Professor at NYU Stern in Corporate Finance.
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Figure 2: Annual return of S&P 500 and the US T-bill

want to measure the risk of a financial asset more directly, a natural choice is to

look at its volatility over time—that is to say, it’s variance. Once we’ve done that,

we can take that direct measure, and see if it does indeed correlate with the returns!

2.2.1 A warning

Okay, full disclosure: this is a bit challenging mathematically. I envisage this

subsection to be the most difficult so far for those of you less comfortable with math.

I’m sorry that it has to be this way, but there really isn’t a ‘math-lite’ alternative

that captures the important features of this measure of risk.

2.2.2 Variance: A reminder

What is the variance of a random variable? Conceptually, the variance is a measure

of how much a random variable varies. When it varies a lot, the variance is large,

and when it varies little, the variance is small. If an object is a fixed constant then

it doesn’t vary at all: its variance is 0.

We can estimate the variance of a random variable by looking at how far our

observations of that variable are from the mean, on average. Putting this notion

into mathematics, the variance of random variable X is given by:

σ2 = E[(Xi − X̄)2]

Note that taking the square of the deviations means that we are just measuring
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distance from the mean; we don’t care about whether its above or below. Let’s

apply this tool to two example financial assets, to show that this measure is a good

indicator of the riskiness of an asset.

Suppose we have 2 assets, Assets A and B. Suppose that we have 10 observations

of the annual returns of those assets:

t A B

1 6.7% 2.3%
2 16.6% 2.1%
3 -14.7% 1.9%
4 26.3% 2.4%
5 -7.4% 0.1%
6 -2.3% 2.0%
7 11.3% -0.1%
8 21.9% 1.1%
9 7.5% 2.2%
1 -3.8% 1.6%

Average 5.61% 1.56%

Which one seems riskier? It seems as though the returns of asset A were far more

variable than the returns of asset B. Thus, intuitively, asset A is riskier than asset

B. Can we formalise that? First, let’s look at how much each observation deviates

from the average:

t A Deviation(A) B Deviation(B)

1 6.7% -4.91% 2.3% 0.74%
2 16.6% 10.99% 2.1% 0.54%
3 -14.7% -20.31% 1.9% 0.34%
4 26.3% 20.69% 2.4% 0.84%
5 -7.4% -13.01% 0.1% -1.46%
6 -2.3% -7.91% 2.0% 0.44%
7 11.3% 5.69% -0.1% -1.66%
8 21.9% 16.29% 1.1% -0.46%
9 7.5% 1.89% 2.2% 0.64%
1 -3.8% -9.41% 1.6% 0.04%

Average 5.61% 0% 1.56% 0%

Now of course, the average deviation from the mean must be equal to 0 by

construction. Whilst we can see that the deviations are greater in absolute size for
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A, taking the average of just the deviations won’t capture that difference, because

the positive and negative deviations cancel each other out. Now let’s square those

differences: this way every deviation measure will be positive, and so gives a measure

of the distance from the mean, rather than the difference from the mean. This term

is called the squared deviation:

t A Deviation2(A) B Deviation2(B)

1 6.7% 24.11% 2.3% 0.55%
2 16.6% 120.78% 2.1% 0.29%
3 -14.7% 412.50% 1.9% 0.12%
4 26.3% 428.08% 2.4% 0.71%
5 -7.4% 169.26% 0.1% 2.13%
6 -2.3% 62.57% 2.0% 0.19%
7 11.3% 32.38% -0.1% 2.76%
8 21.9% 265.36% 1.1% 0.21%
9 7.5% 3.57% 2.2% 0.41%
1 -3.8% 88.55% 1.6% 0.00%

Average 5.61% 160.7% 1.56% 0.7%

The averages in the columns for Deviation2 are the variance of assets A and

B. If we take the square root of the variance, we get the standard deviation: this

is a measure of how much the annual return deviates from the mean on average.

For asset A, σA = 12.68%; for asset B, σB = 0.86%. Both the variance and the

standard deviation are measures of the past volatility of the two assets. Note that

if the variance of A is greater than the variance of B then necessarily the standard

deviation of A is also greater. This brings us to our ‘past volatility’ rule:

Definition 2. The past volatility rule says that an asset A is riskier than an

asset B if the past volatility of asset A (the variance/standard deviation of past

returns) is greater than the past volatility of asset B.

2.2.3 A brief diversion: linear regression

Okay, so now we have a direct measure of riskiness: past volatility. We’ve mentioned

repeatedly that risk and return ought to be directly related. So, if we construct

measures of volatility, do they correlate with returns?

To test this possibility, we’re going to run a regression. A regression is a statistical

technique that helps us establish whether or not two things are related. All that
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a regression does is find the straight line of best fit. So, for example, if we looked

at data on rainfall and data on umbrella sales, and plotted them together, a linear

regression would find the line of best fit between these data points, much as has

been done in the following figure:

As we’d expect, there seems to be a positive relationship between these two

variables; when it rains more, people buy more umbrellas. Usually we represent a

regression not as an image, but as an equation. So in this example, let Y denote

umbrellas sold, and X denote rainfall, and then we represent the linear regression

as:

Yt = β0 + β1Xt + ϵt

When we estimate this expression, we want to estimate, {β0, β1}: note that this is

just the intercept and the slope of the line of best fit! The key parameter we care

about is β1, as this tells us: are these two things related? Note that we allow for some

error: very few things in life are deterministic. In a sense, this error is accounting

for all the other factors that might drive umbrella sales other than rainfall. This is

why our line of best fit in the umbrella example does not touch every observation

—the gap between the line and the observation is the error.

Two things matter for any estimate that we construct: its size, and how confident

we can be that our estimate of the size is correct. The former is referred to as the

coefficient, and the latter is called the standard error. The standard error gives us a

confidence range that we can reasonably expect the true estimate to be in. Perhaps

we estimate a positive coefficient, but the data is so noisy that we can’t really be
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confident that our estimate is accurate?

To show how this concern works in practice, I’m going to generate some data,

where I know what the relationship between two variables that I generate is. I’ll

then run a regression on the relationship between those variables, but vary how noisy

the data is. What we’ll find is that when the data is noisy, we might not be able to

confidently ascertain what the relationship between the two variables is. The whole

process will work something like this:

1. I start by randomly generating 1,000 values between 0 and 1, which I will label

X

2. I then randomly generate two sets of errors, both of size 1,000. These errors

are both drawn from a normal distribution, but the variance or noise of those

errors is different.

(a) For the first set of errors, ϵ1, the variance is 0.1.

(b) For the second set, ϵ2, the variance is 10.

3. I then construct two new variables, Y 1 and Y 2, in the following way:

(a) Y 1
i = 0.5×X1

i + ϵ1i

(b) Y 2
i = 0.5×X1

i + ϵ2i

4. I then estimate two linear regressions, and see whether the computer tells me

that there is statistical significance. I don’t include the actual errors in my

regression, as we assume these to be unknown.

(a) Y 1
i = β1

0 + β1
1X

1
i + ν1

i

(b) Y 2
i = β2

0 + β2
1X

1
i + ν2

i

Before we go ahead and estimate these, let’s take a look at what these two different

setups look like. On the left hand panel of the Figure below, we have Y 1 plotted

alongside X, and on the right hand panel, we have Y 2 plotted alongside X. We can

see that the data with less noisy errors gives a very clear, visible positive relationship.

By contrast, with highly variable errors as in the right panel, we really can’t make

out much at all.
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Maybe actually estimating the data will change things? What should we find.

Well we know the true relationship between X and Y , because we constructed it!

We should find that β0 = 0, and β1 = 0.5. What do we find?

First, let’s look at the coefficients in the regression table below: those are the

values to the right of (Intercept) (β0), and X (β1) that are not in brackets. When

the variance of the shocks is low, i.e. in the Y 1 case, we pick up the true coefficients

pretty closely! We estimate that β1
0 = 0.0026, and β1

1 = 0.4895. When the variance

is high, i.e. in the Y 2 case, we are way off: β2
0 = −0.1862 and β2

1 = 2.164.

What about the standard errors? The standard errors are the values in brackets

immediately below our coefficients. The rule of thumb is that you can be 95%

confident that the true value is between 1.96 standard errors of your

estimated coefficient. So, for β1
0 , the range is [−0.0107, 0.0159], and for β1

1 , the

range is [0.4664, 0.5126]. That is extremely tight!! It also contains the true value!

For β2
0 , the range is [−2.8126, 2.4402], and for β2

1 , the range is [−2.4087, 6.7367].

These ranges are so large that we really can’t be very confident in our estimate at

all. So in the case with smaller errors, we can be considerably more precise about

what seems to be a reasonable range for our estimates. Note that there is at least

a 95% chance in the first case that the true β1 is positive. In the case with larger

errors, we can’t even say that!

The final comment to make on this regression table is about the asterisks. As-
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Dependent Variables: Y 1 Y 2

Model: (1) (2)

Variables
(Intercept) 0.0026 -0.1862

(0.0068) (1.340)
b 0.4895∗∗∗ 2.164

(0.0118) (2.333)

Fit statistics
Observations 1,000 1,000
R2 0.63304 0.00086
Adjusted R2 0.63267 -0.00014

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

terisks denote degrees of statistical significance. All that an asterisk tells you is that,

with some probability, the estimate you’ve found is not zero: i.e. the relationship

you’ve identified is meaningful. For this table, one star denotes that there is at

most a 10% chance that the true relationship is actually 0, despite your estimated

coefficient. Two stars denotes that there is at most a 5% chance, and three stars

denotes that there is at most only a 1% chance that the true relationship is zero.

Note that we have three stars for our estimate of β1
1 : what is this telling us. Simply

that there is a less than 1% chance that the positive relationship we’ve estimated is

in fact just noise.

How do we do this in practice? One way is to do it via Excel. A downside of

using Excel is that it’s difficult to pull out the standard errors from excel, which

makes it hard to assess how confident we should feel in the estimated slope. This

is where the more sophisticated software packages/languages like Stata, R, Matlab,

Python, or Julia come into their own.

If you want to learn more about how these tools and techniques work, then you

should consider taking an econometrics or statistics class. If you’re going to work

in finance, you will no doubt come across regressions at some point, so it may be

worth your while to learn how they work. However, this is not a statistics class,

so I will not be requiring you to perform complicated regressions. At most, you’ll

have to fit a line of best fit using Excel, which is really easy.
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2.2.4 Does volatility correlate with returns?

Okay, back to our original question: does our measure of risk correlate with returns?

To answer this question, I’ve downloaded data on the Annual Returns of 25,249

stocks, from 2008 to 2016, using a database called the Center for Research in Security

Prices or CRSP. For each stock, I estimate its volatility using its past returns. I

then run a regression of annual returns (RET ) on volatility (V OL):

RETi,t = β0 + β1V OLi,t + ϵi,t

Note that our theory tells us that β1 should be greater than 0 : i.e. the greater the

volatility, the greater the return. What do we find?

Dependent Variable: RET
Model: (1)

Variables
(Intercept) -0.0338∗∗∗

(0.0024)
V OL 0.3127∗∗∗

(0.0028)

Fit statistics
Observations 223,659
R2 0.05414
Adjusted R2 0.05414

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Well now, isn’t that a relief! The coefficient we find is positive and equal to

0.3127. The standard error is very small: we can say with 95% confidence that the

true value of β1 is somewhere between [0.3072, 0.3182]. That is very precise!!! Simi-

larly, we can be almost certain that the true relationship is positive —the estimated

probability that the true relationship is actually zero is numerically equal to 0.
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3 Measuring Risk: (ii) From stocks to portfolios

In the previous section, we only considered how risky a single asset was. It is very

rare, and strongly discouraged to only invest in a single asset. Most of the time we

hold a portfolio of stocks. In this subsection, we’ll talk about how we measure the

riskiness of a portfolio of stocks.

3.1 The importance of covariance

Can we just add up the variances of all the stocks in the portfolio? Will that

work? I’m going to show you three simulated examples of two-stock portfolios to

demonstrate why this won’t work. In the first example, the shocks that affect the

two stocks are perfectly inversely related. In the second example, the shocks are

independent across the two stocks. And in the third, the shocks are identical across

the two stocks. Let the value of a given stock be given by yit, and let yit = 1+ρyit−1+ϵit,

where i ∈ {1, 2}. Let {ϵ1, ϵ2} denote the shocks for the two stocks in each of the

three examples, and suppose they have identical variance. Then our three cases can

be summed up as:

1. ϵ11 = −ϵ21

2. ϵ11 |= ϵ21

3. ϵ11 = ϵ21

Let’s simulate these now, supposing that that in each case, the portfolio is a 50/50

blend of the two stocks.

What do we find? When the shocks exactly offset one another, as in Case 1,

the variance of the portfolio is 0. There is no risk at all : the portfolio will always

be worth 10. In Case 2, the stocks occasionally offset each other, but not perfectly:

the variance is 0.65. When the two stocks effectively move identically, the portfolio

variance is maximised as 1.44.

What does this tell us? It tells us that the covariance between the stocks is

critical in determining the overall variance of the portfolio! So we cannot simply

the sum the variances of the two stocks and expect to come up with a sensible

measure of the volatility of our portfolio: in all three of the cases above, the sum of

the variances of the shocks is the same.
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(a) Case 1: ϵ11 = −ϵ21

(b) Case 2: ϵ11 |= ϵ21

(c) Case 3: ϵ11 = ϵ21
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3.2 Formalising the argument —two-stock portfolios

Suppose we have a two-stock portfolio, P , consisting of two stocks, {x, y}, in pro-

portions {ωx, ωy}. Then:
P = ωxx+ ωyy

Then the returns of the portfolio will just be the weighted sum of the two returns:

rP = ωxrx + ωyry

What about the variance of the portfolio? As we’ve just seen:

σ2
P ̸= ωxσ

2
x + ωyσ

y
y

What is the formula for variance?

σ2 = E[(x− E[x])2]

Let’s apply this formula to our portfolio:

σ2
P = E[(rP − E[rP ])2]

= E[(ωxrx + ωyry − E[ωxrx + ωyry])
2]

= E
[
ω2
x(rx − E[rx])2 + ω2

yE[ry − E[ry])2 + 2ωxωy(rx − E[rx])(ry − E[ry])
]

= ω2
xσ

2
x + ω2

yσ
2
y + 2ωxωyσxy

So, key to this formula is the third term: the covariance between x and y! When

x and y move in opposite directions, then σxy will be negative, and so the portfolio

variance falls. In the extreme case where they are perfect mirrors, then the variance

collapses to zero, as in our case 1 from before. If the two stocks are unrelated then

σxy = 0, and so the weighted sum of the variances will give us the answer!

3.2.1 Application to simple example

What the formula above tells us is that it is not just the volatility of the individual

stocks in our portfolio that matters, but also their covariance. To really hammer

this point home, consider the following example. Suppose we are choosing between

two portfolios:

20



• A:

– Stocks: {x, y}

– Weights: ωx = ωy =
1
2

– σ2
x = 5, σ2

y = 2, σxy = −3

• B:

– Stocks: {c, d}

– Weights: ωc = ωd =
1
2

– σ2
c = 2, σ2

d = 1, σcd = 1

Note that both of the stocks in Portfolio A are more volatile than either stock in

Portfolio B. What is the expected variance of the two Portfolios? Well, we just

apply the formula from above!

σ2
A = ω2

xσ
2
x + ω2

yσ
2
y + 2ωxωyσxy

= (0.5)25 + (0.5)22− 2(0.5)(0.5)3

= 0.25

σ2
B = ω2

cσ
2
c + ω2

dσ
2
d + 2ωcωdσcd

= (0.5)22 + (0.5)21 + 2(0.5)(0.5)1

= 1

So Portfolio B has four times the variance of Portfolio A!! Extraordinary!
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3.3 Generalisation to ‘n’-size portfolios

This is advanced. Full warning. Suppose that instead of having just two stocks

in your portfolio, we generalise to ‘n’ stocks. What is the variance of the portfolio

in that case? Although this sounds like it would be super hard to calculate, there’s

actually a simple way of outlining and calculating this number. First, note that the

‘n’ dimension portfolio can be expressed in the following way, where there are ‘n’

weights that communicate how much of our portfolio is in each of the ‘n’ stocks:

P = ω1x1 + ω2x2 + ...+ ωnxn

The return on this portfolio is just:

rP = ω1r1 + ω2r2 + ...+ ωnrn

What about the variance of the portfolios returns? These can be calculated as

before... but the algebra is super messy!! I’ll go through the stages step by step

below, but don’t worry if you feel intimidated by this derivation: it is not easy!!

σ2
P = E[(rP − E[rP ])2]

= E
[
(ω1r1 + ω2r2 + ...+ ωnrn − E[ω1r1 + ω2r2 + ...+ ωnrn])

2
]

= E
[
(ω1(r1 − E[r1]) + ω2(r2 − E[r2]) + ...+ ωn(rn − E[rn]))2

]
= E[

(
ω2
1(r1 − E[r1])2 + ω2

2(r2 − E[r2])2 + ...+ ω2
n(rn − E[rn])2

)2︸ ︷︷ ︸
Own-product

+

2ω1ω2(r1 − E[r1])(r2 − E[r2]) + ...+ 2ωnωn−1(rn − E[rn])(rn−1 − E[rn−1])︸ ︷︷ ︸
Cross-product

]

=
n∑

i=1

ω2
i σ

2
i +

n∑
i=1

∑
j ̸=i

ωiωjσij

=
n∑

i=1

n∑
j=1

ωiωjσij

Okay... so what the hell does that mean? It is very hard to think of how to actually

calculate this portfolio variance using a calculator. However, there is a very neat

way of representing our data that will allow us to find out this number very easily!
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3.3.1 Covariance and Weight Matrices

A matrix is both a classic action movie from 1999 and a very convenient mathemat-

ical representation of data. All a matrix is is a group of numbers, represented in a

grid. Matrices are very useful, because they allow us to represent lots of data in a

more compact fashion. There are also useful techniques we can apply to matrices

to make our lives easier. We aren’t going to worry much about the latter advantage

(save that for your linear algebra classes!), but we absolutely will take advantage of

the former.

We’re going to construct a covariance matrix and a weighting matrix because it

will make it much easier to calculate the portfolio variance. So let’s take a look at

how we construct both.

A covariance matrix is a classic matrix. It’s a way of grouping together all the

variances and covariances between some set of random variables. The idea is that

each ‘row-column’ entry gives the corresponding covariance between the variable in

the row and the variable in the column. Along the diagonal, we are comparing row

‘n’ with column ‘n’, so this diagonal just gives us the variance. A covariance matrix

is often represented as Σ, which is the upper-case of σ. A covariance matrix for the

random variables, {x1, x2, ..., xn} will look something like this:

Σ =

x1 x2 . . . xn

x1 σ2
1 σ1σ2 . . . σ1σn

x2 σ1σ2 σ2
2 . . . σ2σn

...
...

...
. . .

...

xn σ1σn σ2σn . . . σ2
n

So we can see that all the diagonals correspond to the variances of the random

variables, and all the off-diagonals correspond to the covariances. If all the variables

are independent of one another, what should the off-diagonals look like?

Σindependent =

x1 x2 . . . xn

x1 σ2
1 0 . . . 0

x2 0 σ2
2 . . . 0

...
...

...
. . .

...

xn 0 0 . . . σ2
n
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Note that σiσj ≡ σjσ1, so the upper ‘triangle’ is just the exact same as the lower

‘triangle’, just organised differently.

The weighting matrix is going to capture something very similar. We’re going

to lay out all the possible combinations of weighting combinations. Weight matrices

are typically denoted by Ω, which is the upper-case of ω. If we do this for our

weights, it will look something like this:

Ω =

x1 x2 . . . xn

x1 ω2
1 ω1ω2 . . . ω1ωn

x2 ω1ω2 ω2
2 . . . ω2ωn

...
...

...
. . .

...

xn ω1ωn ω2ωn . . . ω2
n

Okay, so we have two matrices now. If we take each element in each matrix, and

multiply them together, element-by-element3, we’ll have a matrix we can call Σ.Ω.

It’ll have a matrix that looks like this:

Σ.Ω =

x1 x2 . . . xn

x1 ω2
1σ

2
1 ω1ω2σ1σ2 . . . ω1ωnσ1σn

x2 ω1ω2σ1σ2 ω2
2σ

2
2 . . . ω2ωnσ2σn

...
...

...
. . .

...

xn ω1ωnσ1σn ω2ωnσ2σn . . . ω2
nσ

2
n

Note that the definition of the portfolio variance was:

σ2
P =

n∑
i=1

n∑
j=1

ωiωjσij

Note that this is just the sum of all the entries in the matrix above! So, if we want

to calculate the variance of a portfolio, we just need to follow four steps:

1. Calculate the covariance matrix4, Σ.

2. Calculate the weight matrix5, Ω.

3This is called ‘element-wise’ multiplication. There are other ways you can multiply matrices
together, but don’t worry about that!

4If you’re using a software package/program like R, or Stata, this is one line of code: super
easy once you know how!

5This is also easy if you have a list of all the weights, but requires some knowledge of matrix

24



3. Multiply element-wise the matrices Σ and Ω.

4. Take the sum of all the entries.

If you gain some familiarity with matrix algebra, and you learn a little coding, this

exercise is extremely quick to perform.

3.3.2 Application: Using CRSP Data

Now that we have the tools to calculate the variance of a portfolio for any number

of stocks, ‘n’, a natural question emerges: what effect does increasing ‘n’ have on

the portfolio variance?

To answer this question, I took the same sample of stocks from CRSP that I used

to estimate the relationship between volatility and returns above. Now, I randomly

select a certain number of stocks from that sample, and compute the volatility of

my stock. I start by picking just 1 stock at random, and then compute the portfolio

variance. I do this many times (10,000), then take the average portfolio variance

across all 10,000 of these trials. This gives me a measure of how volatile on average

a stock portfolio containing just one stock is. I then do the same for a portfolio with

2 stocks, then with 3, so on, all the way up to a stock portfolio containing 40 stocks.

What do I find? So, the average variance of my portfolio is strictly decreasing in

the number of stocks that I pick, if I pick at random. What this is telling us is that

the more stocks I have, the lower my portfolio risk is.

algebra. If you let Ω denote the weighting matrix, and ω is the list or vector of weights, then
Ω = ω′ω. This will mean nothing to you if you’re not familiar with matrix algebra, but if you are,
is a very simple operation that you can easily plug into a computer
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Figure 4: Portfolio Risk is falling in the size of the portfolio
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